Hard
You are given an array of positive integers nums
and an integer k
.
You may perform at most k
operations. In each operation, you can choose one element in the array and double its value. Each element can be doubled at most once.
The score of a contiguous subarray is defined as the product of its length and the greatest common divisor (GCD) of all its elements.
Your task is to return the maximum score that can be achieved by selecting a contiguous subarray from the modified array.
Note:
Example 1:
Input: nums = [2,4], k = 1
Output: 8
Explanation:
nums[0]
to 4 using one operation. The modified array becomes [4, 4]
.[4, 4]
is 4, and the length is 2.2 × 4 = 8
.Example 2:
Input: nums = [3,5,7], k = 2
Output: 14
Explanation:
nums[2]
to 14 using one operation. The modified array becomes [3, 5, 14]
.[14]
is 14, and the length is 1.1 × 14 = 14
.Example 3:
Input: nums = [5,5,5], k = 1
Output: 15
Explanation:
[5, 5, 5]
has a GCD of 5, and its length is 3.3 × 5 = 15
.Constraints:
1 <= n == nums.length <= 1500
1 <= nums[i] <= 109
1 <= k <= n
import kotlin.math.max
class Solution {
fun maxGCDScore(nums: IntArray, k: Int): Long {
var mx = 0
for (x in nums) {
mx = max(mx, x)
}
val width = 32 - Integer.numberOfLeadingZeros(mx)
val lowBitPos: Array<MutableList<Int>> = Array<MutableList<Int>>(width) { _ -> ArrayList<Int>() }
val intervals = Array<IntArray>(width + 1) { IntArray(3) }
var size = 0
var ans: Long = 0
for (i in nums.indices) {
val x = nums[i]
val tz = Integer.numberOfTrailingZeros(x)
lowBitPos[tz].add(i)
for (j in 0..<size) {
intervals[j][0] = gcd(intervals[j][0], x)
}
intervals[size][0] = x
intervals[size][1] = i - 1
intervals[size][2] = i
size++
var idx = 1
for (j in 1..<size) {
if (intervals[j][0] != intervals[j - 1][0]) {
intervals[idx][0] = intervals[j][0]
intervals[idx][1] = intervals[j][1]
intervals[idx][2] = intervals[j][2]
idx++
} else {
intervals[idx - 1][2] = intervals[j][2]
}
}
size = idx
for (j in 0..<size) {
val g = intervals[j][0]
val l = intervals[j][1]
val r = intervals[j][2]
ans = max(ans, g.toLong() * (i - l))
val pos = lowBitPos[Integer.numberOfTrailingZeros(g)]
val minL = if (pos.size > k) max(l, pos[pos.size - k - 1]) else l
if (minL < r) {
ans = max(ans, g.toLong() * 2 * (i - minL))
}
}
}
return ans
}
private fun gcd(a: Int, b: Int): Int {
var a = a
var b = b
while (a != 0) {
val tmp = a
a = b % a
b = tmp
}
return b
}
}