Hard
You are given an m x n
matrix grid
of positive integers. Your task is to determine if it is possible to make either one horizontal or one vertical cut on the grid such that:
Return true
if such a partition exists; otherwise, return false
.
Note: A section is connected if every cell in it can be reached from any other cell by moving up, down, left, or right through other cells in the section.
Example 1:
Input: grid = [[1,4],[2,3]]
Output: true
Explanation:
1 + 4 = 5
and 2 + 3 = 5
, which are equal. Thus, the answer is true
.Example 2:
Input: grid = [[1,2],[3,4]]
Output: true
Explanation:
1 + 3 = 4
and 2 + 4 = 6
.6 - 2 = 4
), both sections have equal sums and remain connected. Thus, the answer is true
.Example 3:
Input: grid = [[1,2,4],[2,3,5]]
Output: false
Explanation:
1 + 2 + 4 = 7
and 2 + 3 + 5 = 10
.10 - 3 = 7
), both sections have equal sums, but they do not remain connected as it splits the bottom section into two parts ([2]
and [5]
). Thus, the answer is false
.Example 4:
Input: grid = [[4,1,8],[3,2,6]]
Output: false
Explanation:
No valid cut exists, so the answer is false
.
Constraints:
1 <= m == grid.length <= 105
1 <= n == grid[i].length <= 105
2 <= m * n <= 105
1 <= grid[i][j] <= 105
class Solution {
private fun calculateSum(grid: Array<IntArray>, count: IntArray): Long {
var sum: Long = 0
for (line in grid) {
for (num in line) {
sum += num.toLong()
count[num]++
}
}
return sum
}
private fun checkHorizontalPartition(grid: Array<IntArray>, sum: Long, count: IntArray): Boolean {
val half = IntArray(MAX_SIZE)
var now: Long = 0
val m = grid.size
val n = grid[0].size
for (i in 0..<m - 1) {
for (j in 0..<n) {
now += grid[i][j].toLong()
count[grid[i][j]]--
half[grid[i][j]]++
}
if (now * 2 == sum) {
return true
}
if (now * 2 > sum) {
val diff = now * 2 - sum
if (diff <= MAX_SIZE - 1 && half[diff.toInt()] > 0) {
if (n > 1) {
if (i > 0 || grid[0][0].toLong() == diff || grid[0][n - 1].toLong() == diff) {
return true
}
} else {
if (i > 0 && (grid[0][0].toLong() == diff || grid[i][0].toLong() == diff)) {
return true
}
}
}
} else {
val diff = sum - now * 2
if (diff <= MAX_SIZE - 1 && count[diff.toInt()] > 0) {
if (n > 1) {
if (i < m - 2 || grid[m - 1][0].toLong() == diff || grid[m - 1][n - 1].toLong() == diff) {
return true
}
} else {
if (i > 0 && (grid[m - 1][0].toLong() == diff || grid[i + 1][0].toLong() == diff)) {
return true
}
}
}
}
}
return false
}
private fun checkVerticalPartition(grid: Array<IntArray>, sum: Long): Boolean {
val count = IntArray(MAX_SIZE)
val half = IntArray(MAX_SIZE)
for (line in grid) {
for (num in line) {
count[num]++
}
}
var now: Long = 0
val m = grid.size
val n = grid[0].size
for (i in 0..<n - 1) {
for (ints in grid) {
now += ints[i].toLong()
count[ints[i]]--
half[ints[i]]++
}
if (now * 2 == sum) {
return true
}
if (now * 2 > sum) {
val diff = now * 2 - sum
if (diff <= MAX_SIZE - 1 && half[diff.toInt()] > 0) {
if (m > 1) {
if (i > 0 || grid[0][0].toLong() == diff || grid[m - 1][0].toLong() == diff) {
return true
}
} else {
if (i > 0 && (grid[0][0].toLong() == diff || grid[0][i].toLong() == diff)) {
return true
}
}
}
} else {
val diff = sum - now * 2
if (diff <= MAX_SIZE - 1 && count[diff.toInt()] > 0) {
if (m > 1) {
if (i < n - 2 || grid[0][n - 1].toLong() == diff || grid[m - 1][n - 1].toLong() == diff) {
return true
}
} else {
if (i > 0 && (grid[0][n - 1].toLong() == diff || grid[0][i + 1].toLong() == diff)) {
return true
}
}
}
}
}
return false
}
fun canPartitionGrid(grid: Array<IntArray>): Boolean {
val count = IntArray(MAX_SIZE)
val sum = calculateSum(grid, count)
return checkHorizontalPartition(grid, sum, count) || checkVerticalPartition(grid, sum)
}
companion object {
private const val MAX_SIZE = 100001
}
}