Medium
You are given an m x n
grid. A robot starts at the top-left corner of the grid (0, 0)
and wants to reach the bottom-right corner (m - 1, n - 1)
. The robot can move either right or down at any point in time.
The grid contains a value coins[i][j]
in each cell:
coins[i][j] >= 0
, the robot gains that many coins.coins[i][j] < 0
, the robot encounters a robber, and the robber steals the absolute value of coins[i][j]
coins.The robot has a special ability to neutralize robbers in at most 2 cells on its path, preventing them from stealing coins in those cells.
Note: The robot’s total coins can be negative.
Return the maximum profit the robot can gain on the route.
Example 1:
Input: coins = [[0,1,-1],[1,-2,3],[2,-3,4]]
Output: 8
Explanation:
An optimal path for maximum coins is:
(0, 0)
with 0
coins (total coins = 0
).(0, 1)
, gaining 1
coin (total coins = 0 + 1 = 1
).(1, 1)
, where there’s a robber stealing 2
coins. The robot uses one neutralization here, avoiding the robbery (total coins = 1
).(1, 2)
, gaining 3
coins (total coins = 1 + 3 = 4
).(2, 2)
, gaining 4
coins (total coins = 4 + 4 = 8
).Example 2:
Input: coins = [[10,10,10],[10,10,10]]
Output: 40
Explanation:
An optimal path for maximum coins is:
(0, 0)
with 10
coins (total coins = 10
).(0, 1)
, gaining 10
coins (total coins = 10 + 10 = 20
).(0, 2)
, gaining another 10
coins (total coins = 20 + 10 = 30
).(1, 2)
, gaining the final 10
coins (total coins = 30 + 10 = 40
).Constraints:
m == coins.length
n == coins[i].length
1 <= m, n <= 500
-1000 <= coins[i][j] <= 1000
import kotlin.math.max
class Solution {
fun maximumAmount(coins: Array<IntArray>): Int {
val m = coins.size
val n = coins[0].size
val dp = Array<IntArray>(m) { IntArray(n) }
val dp1 = Array<IntArray>(m) { IntArray(n) }
val dp2 = Array<IntArray>(m) { IntArray(n) }
dp[0][0] = coins[0][0]
for (j in 1..<n) {
dp[0][j] = dp[0][j - 1] + coins[0][j]
}
for (i in 1..<m) {
dp[i][0] = dp[i - 1][0] + coins[i][0]
}
for (i in 1..<m) {
for (j in 1..<n) {
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]) + coins[i][j]
}
}
dp1[0][0] = max(coins[0][0], 0)
for (j in 1..<n) {
dp1[0][j] = max(dp[0][j - 1], (dp1[0][j - 1] + coins[0][j]))
}
for (i in 1..<m) {
dp1[i][0] = max(dp[i - 1][0], (dp1[i - 1][0] + coins[i][0]))
}
for (i in 1..<m) {
for (j in 1..<n) {
dp1[i][j] = max(
max(dp[i][j - 1], dp[i - 1][j]),
(max(dp1[i][j - 1], dp1[i - 1][j]) + coins[i][j]),
)
}
}
dp2[0][0] = max(coins[0][0], 0)
for (j in 1..<n) {
dp2[0][j] = max(dp1[0][j - 1], (dp2[0][j - 1] + coins[0][j]))
}
for (i in 1..<m) {
dp2[i][0] = max(dp1[i - 1][0], (dp2[i - 1][0] + coins[i][0]))
}
for (i in 1..<m) {
for (j in 1..<n) {
dp2[i][j] = max(
max(dp1[i][j - 1], dp1[i - 1][j]),
(max(dp2[i][j - 1], dp2[i - 1][j]) + coins[i][j]),
)
}
}
return dp2[m - 1][n - 1]
}
}