Easy
Given an array nums
of n
integers and an integer k
, determine whether there exist two adjacent subarrays of length k
such that both subarrays are strictly increasing. Specifically, check if there are two subarrays starting at indices a
and b
(a < b
), where:
nums[a..a + k - 1]
and nums[b..b + k - 1]
are strictly increasing.b = a + k
.Return true
if it is possible to find two such subarrays, and false
otherwise.
Example 1:
Input: nums = [2,5,7,8,9,2,3,4,3,1], k = 3
Output: true
Explanation:
2
is [7, 8, 9]
, which is strictly increasing.5
is [2, 3, 4]
, which is also strictly increasing.true
.Example 2:
Input: nums = [1,2,3,4,4,4,4,5,6,7], k = 5
Output: false
Constraints:
2 <= nums.length <= 100
1 < 2 * k <= nums.length
-1000 <= nums[i] <= 1000
class Solution {
fun hasIncreasingSubarrays(nums: List<Int>, k: Int): Boolean {
val l = nums.size
if (l < k * 2) {
return false
}
for (i in 0..<l - 2 * k + 1) {
if (check(i, k, nums) && check(i + k, k, nums)) {
return true
}
}
return false
}
private fun check(p: Int, k: Int, nums: List<Int>): Boolean {
for (i in p..<p + k - 1) {
if (nums[i] >= nums[i + 1]) {
return false
}
}
return true
}
}