Hard
You are given an array nums
of n
integers and two integers k
and x
.
The x-sum of an array is calculated by the following procedure:
x
most frequent elements. If two elements have the same number of occurrences, the element with the bigger value is considered more frequent.Note that if an array has less than x
distinct elements, its x-sum is the sum of the array.
Return an integer array answer
of length n - k + 1
where answer[i]
is the x-sum of the subarray nums[i..i + k - 1]
.
Example 1:
Input: nums = [1,1,2,2,3,4,2,3], k = 6, x = 2
Output: [6,10,12]
Explanation:
[1, 1, 2, 2, 3, 4]
, only elements 1 and 2 will be kept in the resulting array. Hence, answer[0] = 1 + 1 + 2 + 2
.[1, 2, 2, 3, 4, 2]
, only elements 2 and 4 will be kept in the resulting array. Hence, answer[1] = 2 + 2 + 2 + 4
. Note that 4 is kept in the array since it is bigger than 3 and 1 which occur the same number of times.[2, 2, 3, 4, 2, 3]
, only elements 2 and 3 are kept in the resulting array. Hence, answer[2] = 2 + 2 + 2 + 3 + 3
.Example 2:
Input: nums = [3,8,7,8,7,5], k = 2, x = 2
Output: [11,15,15,15,12]
Explanation:
Since k == x
, answer[i]
is equal to the sum of the subarray nums[i..i + k - 1]
.
Constraints:
nums.length == n
1 <= n <= 105
1 <= nums[i] <= 109
1 <= x <= k <= nums.length
import java.util.HashMap
import java.util.TreeSet
class Solution {
private class RC(v: Int, c: Int) : Comparable<RC> {
var `val`: Int
var cnt: Int
init {
`val` = v
cnt = c
}
override fun compareTo(other: RC): Int {
if (cnt != other.cnt) {
return cnt - other.cnt
}
return `val` - other.`val`
}
}
fun findXSum(nums: IntArray, k: Int, x: Int): LongArray {
val n = nums.size
val ans = LongArray(n - k + 1)
val cnt: MutableMap<Int, Int> = HashMap<Int, Int>()
val s1 = TreeSet<RC>()
val s2 = TreeSet<RC>()
var sum: Long = 0
var xSum: Long = 0
for (i in 0 until n) {
sum += nums[i].toLong()
var curCnt: Int = cnt.getOrDefault(nums[i], 0)
cnt.put(nums[i], curCnt + 1)
var tmp = RC(nums[i], curCnt)
if (s1.contains(tmp)) {
s1.remove(tmp)
s1.add(RC(nums[i], curCnt + 1))
xSum += nums[i].toLong()
} else {
s2.remove(tmp)
s1.add(RC(nums[i], curCnt + 1))
xSum += nums[i].toLong() * (curCnt + 1)
while (s1.size > x) {
val l = s1.first()
s1.remove(l)
xSum -= l.`val`.toLong() * l.cnt
s2.add(l)
}
}
if (i >= k - 1) {
ans[i - k + 1] = if (s1.size == x) xSum else sum
val v = nums[i - k + 1]
sum -= v.toLong()
curCnt = cnt[v]!!
if (curCnt > 1) {
cnt.put(v, curCnt - 1)
} else {
cnt.remove(v)
}
tmp = RC(v, curCnt)
if (s2.contains(tmp)) {
s2.remove(tmp)
if (curCnt > 1) {
s2.add(RC(v, curCnt - 1))
}
} else {
s1.remove(tmp)
xSum -= v.toLong() * curCnt
if (curCnt > 1) {
s2.add(RC(v, curCnt - 1))
}
while (s1.size < x && s2.isNotEmpty()) {
val r = s2.last()
s2.remove(r)
s1.add(r)
xSum += r.`val`.toLong() * r.cnt
}
}
}
}
return ans
}
}