Hard
There is a 50 x 50
chessboard with one knight and some pawns on it. You are given two integers kx
and ky
where (kx, ky)
denotes the position of the knight, and a 2D array positions
where positions[i] = [xi, yi]
denotes the position of the pawns on the chessboard.
Alice and Bob play a turn-based game, where Alice goes first. In each player’s turn:
Alice is trying to maximize the sum of the number of moves made by both players until there are no more pawns on the board, whereas Bob tries to minimize them.
Return the maximum total number of moves made during the game that Alice can achieve, assuming both players play optimally.
Note that in one move, a chess knight has eight possible positions it can move to, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction.
Example 1:
Input: kx = 1, ky = 1, positions = [[0,0]]
Output: 4
Explanation:
The knight takes 4 moves to reach the pawn at (0, 0)
.
Example 2:
Input: kx = 0, ky = 2, positions = [[1,1],[2,2],[3,3]]
Output: 8
Explanation:
(2, 2)
and captures it in two moves: (0, 2) -> (1, 4) -> (2, 2)
.(3, 3)
and captures it in two moves: (2, 2) -> (4, 1) -> (3, 3)
.(1, 1)
and captures it in four moves: (3, 3) -> (4, 1) -> (2, 2) -> (0, 3) -> (1, 1)
.Example 3:
Input: kx = 0, ky = 0, positions = [[1,2],[2,4]]
Output: 3
Explanation:
(2, 4)
and captures it in two moves: (0, 0) -> (1, 2) -> (2, 4)
. Note that the pawn at (1, 2)
is not captured.(1, 2)
and captures it in one move: (2, 4) -> (1, 2)
.Constraints:
0 <= kx, ky <= 49
1 <= positions.length <= 15
positions[i].length == 2
0 <= positions[i][0], positions[i][1] <= 49
positions[i]
are unique.positions[i] != [kx, ky]
for all 0 <= i < positions.length
.import java.util.LinkedList
import java.util.Queue
import kotlin.math.max
import kotlin.math.min
class Solution {
private lateinit var distances: Array<IntArray>
private lateinit var memo: Array<Array<Int?>?>
fun maxMoves(kx: Int, ky: Int, positions: Array<IntArray>): Int {
val n = positions.size
distances = Array<IntArray>(n + 1) { IntArray(n + 1) { 0 } }
memo = Array<Array<Int?>?>(n + 1) { arrayOfNulls<Int>(1 shl n) }
// Calculate distances between all pairs of positions (including knight's initial position)
for (i in 0 until n) {
distances[n][i] = calculateMoves(kx, ky, positions[i][0], positions[i][1])
for (j in i + 1 until n) {
val dist =
calculateMoves(
positions[i][0],
positions[i][1],
positions[j][0],
positions[j][1],
)
distances[j][i] = dist
distances[i][j] = distances[j][i]
}
}
return minimax(n, (1 shl n) - 1, true)
}
private fun minimax(lastPos: Int, remainingPawns: Int, isAlice: Boolean): Int {
if (remainingPawns == 0) {
return 0
}
if (memo[lastPos]!![remainingPawns] != null) {
return memo[lastPos]!![remainingPawns]!!
}
var result = if (isAlice) 0 else Int.Companion.MAX_VALUE
for (i in 0 until distances.size - 1) {
if ((remainingPawns and (1 shl i)) != 0) {
val newRemainingPawns = remainingPawns and (1 shl i).inv()
val moveValue = distances[lastPos][i] + minimax(i, newRemainingPawns, !isAlice)
result = if (isAlice) {
max(result, moveValue)
} else {
min(result, moveValue)
}
}
}
memo[lastPos]!![remainingPawns] = result
return result
}
private fun calculateMoves(x1: Int, y1: Int, x2: Int, y2: Int): Int {
if (x1 == x2 && y1 == y2) {
return 0
}
val visited = Array<BooleanArray?>(50) { BooleanArray(50) }
val queue: Queue<IntArray> = LinkedList<IntArray>()
queue.offer(intArrayOf(x1, y1, 0))
visited[x1]!![y1] = true
while (queue.isNotEmpty()) {
val current = queue.poll()
val x = current[0]
val y = current[1]
val moves = current[2]
for (move in KNIGHT_MOVES) {
val nx = x + move[0]
val ny = y + move[1]
if (nx == x2 && ny == y2) {
return moves + 1
}
if (nx >= 0 && nx < 50 && ny >= 0 && ny < 50 && !visited[nx]!![ny]) {
queue.offer(intArrayOf(nx, ny, moves + 1))
visited[nx]!![ny] = true
}
}
}
// Should never reach here if input is valid
return -1
}
companion object {
private val KNIGHT_MOVES = arrayOf<IntArray>(
intArrayOf(-2, -1),
intArrayOf(-2, 1),
intArrayOf(-1, -2),
intArrayOf(-1, 2),
intArrayOf(1, -2),
intArrayOf(1, 2),
intArrayOf(2, -1),
intArrayOf(2, 1),
)
}
}