Hard
You are given an integer array nums
of length n
, and a positive integer k
.
The power of a subsequence is defined as the minimum absolute difference between any two elements in the subsequence.
Return the sum of powers of all subsequences of nums
which have length equal to k
.
Since the answer may be large, return it modulo 109 + 7
.
Example 1:
Input: nums = [1,2,3,4], k = 3
Output: 4
Explanation:
There are 4 subsequences in nums
which have length 3: [1,2,3]
, [1,3,4]
, [1,2,4]
, and [2,3,4]
. The sum of powers is |2 - 3| + |3 - 4| + |2 - 1| + |3 - 4| = 4
.
Example 2:
Input: nums = [2,2], k = 2
Output: 0
Explanation:
The only subsequence in nums
which has length 2 is [2,2]
. The sum of powers is |2 - 2| = 0
.
Example 3:
Input: nums = [4,3,-1], k = 2
Output: 10
Explanation:
There are 3 subsequences in nums
which have length 2: [4,3]
, [4,-1]
, and [3,-1]
. The sum of powers is |4 - 3| + |4 - (-1)| + |3 - (-1)| = 10
.
Constraints:
2 <= n == nums.length <= 50
-108 <= nums[i] <= 108
2 <= k <= n
import kotlin.math.min
class Solution {
private var len = 0
private fun dfs(lastIdx: Int, k: Int, minDiff: Int, dp: MutableMap<Long, Int>, nums: IntArray): Int {
if (k == 0) {
return minDiff
}
val key = ((minDiff.toLong()) shl 12) + (lastIdx.toLong() shl 6) + k
if (dp.containsKey(key)) {
return dp[key]!!
}
var res = 0
for (i in lastIdx + 1..len - k) {
res = (
res + dfs(
i, k - 1, min(minDiff, (nums[i] - nums[lastIdx])), dp, nums,
)
) % MOD
}
dp[key] = res
return res
}
fun sumOfPowers(nums: IntArray, k: Int): Int {
len = nums.size
nums.sort()
val dp: MutableMap<Long, Int> = HashMap()
var res = 0
for (i in 0..len - k) {
res = (res + dfs(i, k - 1, nums[len - 1] - nums[0], dp, nums)) % MOD
}
return res
}
companion object {
private const val MOD = 1000000007
}
}