Hard
You are given a 0-indexed m * n
integer matrix values
, representing the values of m * n
different items in m
different shops. Each shop has n
items where the jth
item in the ith
shop has a value of values[i][j]
. Additionally, the items in the ith
shop are sorted in non-increasing order of value. That is, values[i][j] >= values[i][j + 1]
for all 0 <= j < n - 1
.
On each day, you would like to buy a single item from one of the shops. Specifically, On the dth
day you can:
i
.j
for the price of values[i][j] * d
. That is, find the greatest index j
such that item j
was never bought before, and buy it for the price of values[i][j] * d
.Note that all items are pairwise different. For example, if you have bought item 0
from shop 1
, you can still buy item 0
from any other shop.
Return the maximum amount of money that can be spent on buying all m * n
products.
Example 1:
Input: values = [[8,5,2],[6,4,1],[9,7,3]]
Output: 285
Explanation: On the first day, we buy product 2 from shop 1 for a price of values[1][2] * 1 = 1.
On the second day, we buy product 2 from shop 0 for a price of values[0][2] * 2 = 4.
On the third day, we buy product 2 from shop 2 for a price of values[2][2] * 3 = 9.
On the fourth day, we buy product 1 from shop 1 for a price of values[1][1] * 4 = 16.
On the fifth day, we buy product 1 from shop 0 for a price of values[0][1] * 5 = 25.
On the sixth day, we buy product 0 from shop 1 for a price of values[1][0] * 6 = 36.
On the seventh day, we buy product 1 from shop 2 for a price of values[2][1] * 7 = 49.
On the eighth day, we buy product 0 from shop 0 for a price of values[0][0] * 8 = 64.
On the ninth day, we buy product 0 from shop 2 for a price of values[2][0] * 9 = 81.
Hence, our total spending is equal to 285.
It can be shown that 285 is the maximum amount of money that can be spent buying all m * n products.
Example 2:
Input: values = [[10,8,6,4,2],[9,7,5,3,2]]
Output: 386
Explanation: On the first day, we buy product 4 from shop 0 for a price of values[0][4] * 1 = 2.
On the second day, we buy product 4 from shop 1 for a price of values[1][4] * 2 = 4.
On the third day, we buy product 3 from shop 1 for a price of values[1][3] * 3 = 9.
On the fourth day, we buy product 3 from shop 0 for a price of values[0][3] * 4 = 16.
On the fifth day, we buy product 2 from shop 1 for a price of values[1][2] * 5 = 25.
On the sixth day, we buy product 2 from shop 0 for a price of values[0][2] * 6 = 36.
On the seventh day, we buy product 1 from shop 1 for a price of values[1][1] * 7 = 49.
On the eighth day, we buy product 1 from shop 0 for a price of values[0][1] * 8 = 64
On the ninth day, we buy product 0 from shop 1 for a price of values[1][0] * 9 = 81.
On the tenth day, we buy product 0 from shop 0 for a price of values[0][0] * 10 = 100.
Hence, our total spending is equal to 386.
It can be shown that 386 is the maximum amount of money that can be spent buying all m * n products.
Constraints:
1 <= m == values.length <= 10
1 <= n == values[i].length <= 104
1 <= values[i][j] <= 106
values[i]
are sorted in non-increasing order.class Solution {
private class Node {
var `val`: Int = -1
var next: Node? = null
constructor(`val`: Int) {
this.`val` = `val`
}
constructor()
}
fun maxSpending(values: Array<IntArray>): Long {
val m = values.size
val n = values[0].size
val head = Node()
var node: Node? = head
for (j in n - 1 downTo 0) {
node!!.next = Node(values[0][j])
node = node.next
}
for (i in 1 until m) {
node = head
for (j in n - 1 downTo 0) {
while (node!!.next != null && node.next!!.`val` <= values[i][j]) {
node = node.next
}
val next = node.next
node.next = Node(values[i][j])
node = node.next
node!!.next = next
}
}
var res: Long = 0
var day: Long = 1
node = head.next
while (node != null) {
res += day * node.`val`
node = node.next
day++
}
return res
}
}