LeetCode in Kotlin

2873. Maximum Value of an Ordered Triplet I

Easy

You are given a 0-indexed integer array nums.

Return the maximum value over all triplets of indices (i, j, k) such that i < j < k. If all such triplets have a negative value, return 0.

The value of a triplet of indices (i, j, k) is equal to (nums[i] - nums[j]) * nums[k].

Example 1:

Input: nums = [12,6,1,2,7]

Output: 77

Explanation: The value of the triplet (0, 2, 4) is (nums[0] - nums[2]) * nums[4] = 77. It can be shown that there are no ordered triplets of indices with a value greater than 77.

Example 2:

Input: nums = [1,10,3,4,19]

Output: 133

Explanation: The value of the triplet (1, 2, 4) is (nums[1] - nums[2]) * nums[4] = 133. It can be shown that there are no ordered triplets of indices with a value greater than 133.

Example 3:

Input: nums = [1,2,3]

Output: 0

Explanation: The only ordered triplet of indices (0, 1, 2) has a negative value of (nums[0] - nums[1]) * nums[2] = -3. Hence, the answer would be 0.

Constraints:

Solution

import kotlin.math.max

class Solution {
    fun maximumTripletValue(nums: IntArray): Long {
        val n = nums.size
        val iNumMaxs = IntArray(n)
        var prev = 0
        for (i in 0 until n) {
            if (nums[i] <= prev) {
                iNumMaxs[i] = prev
            } else {
                iNumMaxs[i] = nums[i]
                prev = iNumMaxs[i]
            }
        }
        var result: Long = 0
        var kNumMax = nums[n - 1]
        for (j in n - 2 downTo 1) {
            result = max(
                result.toDouble(),
                ((iNumMaxs[j - 1] - nums[j]).toLong() * kNumMax).toDouble(),
            ).toLong()
            if (nums[j] > kNumMax) {
                kNumMax = nums[j]
            }
        }
        return result
    }
}