LeetCode in Kotlin

2866. Beautiful Towers II

Medium

You are given a 0-indexed array maxHeights of n integers.

You are tasked with building n towers in the coordinate line. The ith tower is built at coordinate i and has a height of heights[i].

A configuration of towers is beautiful if the following conditions hold:

  1. 1 <= heights[i] <= maxHeights[i]
  2. heights is a mountain array.

Array heights is a mountain if there exists an index i such that:

Return the maximum possible sum of heights of a beautiful configuration of towers.

Example 1:

Input: maxHeights = [5,3,4,1,1]

Output: 13

Explanation: One beautiful configuration with a maximum sum is heights = [5,3,3,1,1]. This configuration is beautiful since:

It can be shown that there exists no other beautiful configuration with a sum of heights greater than 13.

Example 2:

Input: maxHeights = [6,5,3,9,2,7]

Output: 22

Explanation: One beautiful configuration with a maximum sum is heights = [3,3,3,9,2,2]. This configuration is beautiful since:

It can be shown that there exists no other beautiful configuration with a sum of heights greater than 22.

Example 3:

Input: maxHeights = [3,2,5,5,2,3]

Output: 18

Explanation: One beautiful configuration with a maximum sum is heights = [2,2,5,5,2,2]. This configuration is beautiful since:

Note that, for this configuration, i = 3 can also be considered a peak. It can be shown that there exists no other beautiful configuration with a sum of heights greater than 18.

Constraints:

Solution

import java.util.Deque
import java.util.LinkedList
import kotlin.math.max

class Solution {
    fun maximumSumOfHeights(mH: List<Int>): Long {
        val n = mH.size
        val st: Deque<Int> = LinkedList()
        val prevSmaller = IntArray(n + 1)
        for (i in 0 until n) {
            while (st.isNotEmpty() && mH[st.peek()] >= mH[i]) {
                st.pop()
            }
            if (st.isEmpty()) {
                prevSmaller[i] = -1
            } else {
                prevSmaller[i] = st.peek()
            }
            st.push(i)
        }
        st.clear()
        val nextSmaller = IntArray(n + 1)
        for (i in n - 1 downTo 0) {
            while (st.isNotEmpty() && mH[st.peek()] >= mH[i]) {
                st.pop()
            }
            if (st.isEmpty()) {
                nextSmaller[i] = n
            } else {
                nextSmaller[i] = st.peek()
            }
            st.push(i)
        }
        val leftSum = LongArray(n)
        leftSum[0] = mH[0].toLong()
        for (i in 1 until n) {
            val prevSmallerIdx = prevSmaller[i]
            val equalCount = i - prevSmallerIdx
            leftSum[i] = (equalCount.toLong() * mH[i])
            if (prevSmallerIdx != -1) {
                leftSum[i] += leftSum[prevSmallerIdx]
            }
        }
        val rightSum = LongArray(n)
        rightSum[n - 1] = mH[n - 1].toLong()
        for (i in n - 2 downTo 0) {
            val nextSmallerIdx = nextSmaller[i]
            val equalCount = nextSmallerIdx - i
            rightSum[i] = (equalCount.toLong() * mH[i])
            if (nextSmallerIdx != n) {
                rightSum[i] += rightSum[nextSmallerIdx]
            }
        }
        var ans: Long = 0
        for (i in 0 until n) {
            val totalSum = leftSum[i] + rightSum[i] - mH[i]
            ans = max(ans, totalSum)
        }
        return ans
    }
}