LeetCode in Kotlin

2818. Apply Operations to Maximize Score

Hard

You are given an array nums of n positive integers and an integer k.

Initially, you start with a score of 1. You have to maximize your score by applying the following operation at most k times:

Here, nums[l, ..., r] denotes the subarray of nums starting at index l and ending at the index r, both ends being inclusive.

The prime score of an integer x is equal to the number of distinct prime factors of x. For example, the prime score of 300 is 3 since 300 = 2 * 2 * 3 * 5 * 5.

Return the maximum possible score after applying at most k operations.

Since the answer may be large, return it modulo 109 + 7.

Example 1:

Input: nums = [8,3,9,3,8], k = 2

Output: 81

Explanation:

To get a score of 81, we can apply the following operations:

It can be proven that 81 is the highest score one can obtain.

Example 2:

Input: nums = [19,12,14,6,10,18], k = 3

Output: 4788

Explanation:

To get a score of 4788, we can apply the following operations:

Constraints:

Solution

import java.util.ArrayDeque
import java.util.Deque
import java.util.PriorityQueue
import kotlin.math.min

@Suppress("NAME_SHADOWING")
class Solution {
    fun maximumScore(nums: List<Int?>, k: Int): Int {
        // count strictly using nums.get(i) as the selected num
        var k = k
        val dp = IntArray(nums.size)
        // [val, index]
        val pq = PriorityQueue { o1: IntArray, o2: IntArray ->
            Integer.compare(
                o2[0],
                o1[0],
            )
        }
        val monoStack: Deque<IntArray> = ArrayDeque()
        dp.fill(1)
        for (i in 0..nums.size) {
            var score = Int.MAX_VALUE
            if (i < nums.size) {
                score = PRIME_SCORES[nums[i]!!]
            }
            // when an element is poped, its right bound is confirmed: (i - left + 1) * (right - i +
            // 1)
            while (monoStack.isNotEmpty() && monoStack.peekFirst()[0] < score) {
                val popIndex = monoStack.pollFirst()[1]
                val actualRightIndexOfPopedElement = i - 1
                dp[popIndex] *= actualRightIndexOfPopedElement - popIndex + 1
            }
            // when an element is pushed, its left bound is confirmed: (i - left + 1) * (right - i +
            // 1)
            if (i < nums.size) {
                val peekIndex = if (monoStack.isEmpty()) -1 else monoStack.peekFirst()[1]
                val actualLeftIndexOfCurrentElement = peekIndex + 1
                dp[i] *= i - actualLeftIndexOfCurrentElement + 1
                monoStack.offerFirst(intArrayOf(score, i))
                pq.offer(intArrayOf(nums[i]!!, i))
            }
        }
        var result: Long = 1
        while (k > 0) {
            val pair = pq.poll()
            val `val` = pair[0]
            val index = pair[1]
            val times = min(k.toDouble(), dp[index].toDouble()).toInt()
            val power = pow(`val`.toLong(), times)
            result *= power
            result %= MOD.toLong()
            k -= times
        }
        return result.toInt()
    }

    private fun pow(`val`: Long, times: Int): Long {
        if (times == 1) {
            return `val` % MOD
        }
        val subProblemRes = pow(`val`, times / 2)
        var third = 1L
        if (times % 2 == 1) {
            third = `val`
        }
        return subProblemRes * subProblemRes % MOD * third % MOD
    }

    companion object {
        private const val N = 100000
        private val PRIME_SCORES = computePrimeScores()
        private const val MOD = 1000000000 + 7
        private fun computePrimeScores(): IntArray {
            val primeCnt = IntArray(N + 1)
            for (i in 2..N) {
                if (primeCnt[i] == 0) {
                    var j = i
                    while (j <= N) {
                        primeCnt[j]++
                        j += i
                    }
                }
            }
            return primeCnt
        }
    }
}