Hard
You are given an undirected weighted connected graph containing n
nodes labeled from 0
to n - 1
, and an integer array edges
where edges[i] = [ai, bi, wi]
indicates that there is an edge between nodes ai
and bi
with weight wi
.
Some edges have a weight of -1
(wi = -1
), while others have a positive weight (wi > 0
).
Your task is to modify all edges with a weight of -1
by assigning them positive integer values in the range [1, 2 * 109]
so that the shortest distance between the nodes source
and destination
becomes equal to an integer target
. If there are multiple modifications that make the shortest distance between source
and destination
equal to target
, any of them will be considered correct.
Return an array containing all edges (even unmodified ones) in any order if it is possible to make the shortest distance from source
to destination
equal to target
, or an empty array if it’s impossible.
Note: You are not allowed to modify the weights of edges with initial positive weights.
Example 1:
Input: n = 5, edges = [[4,1,-1],[2,0,-1],[0,3,-1],[4,3,-1]], source = 0, destination = 1, target = 5
Output: [[4,1,1],[2,0,1],[0,3,3],[4,3,1]]
Explanation: The graph above shows a possible modification to the edges, making the distance from 0 to 1 equal to 5.
Example 2:
Input: n = 3, edges = [[0,1,-1],[0,2,5]], source = 0, destination = 2, target = 6
Output: []
Explanation: The graph above contains the initial edges. It is not possible to make the distance from 0 to 2 equal to 6 by modifying the edge with weight -1. So, an empty array is returned.
Example 3:
Input: n = 4, edges = [[1,0,4],[1,2,3],[2,3,5],[0,3,-1]], source = 0, destination = 2, target = 6
Output: [[1,0,4],[1,2,3],[2,3,5],[0,3,1]]
Explanation: The graph above shows a modified graph having the shortest distance from 0 to 2 as 6.
Constraints:
1 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= ai, bi < n
wi = -1
or 1 <= wi <= 107
ai != bi
0 <= source, destination < n
source != destination
1 <= target <= 109
import java.util.PriorityQueue
class Solution {
private inner class Edge(var s: Int, var d: Int, var wt: Int)
private lateinit var g: Array<ArrayList<Edge>?>
private var n = 0
private var t = 0
fun modifiedGraphEdges(
n: Int,
edges: Array<IntArray>,
source: Int,
destination: Int,
target: Int,
): Array<IntArray> {
this.n = n
g = arrayOfNulls(n)
t = target
for (i in 0 until n) {
g[i] = ArrayList()
}
for (e in edges) {
val s = e[0]
val d = e[1]
val wt = e[2]
if (wt == -1) continue
g[s]!!.add(Edge(s, d, wt))
g[d]!!.add(Edge(d, s, wt))
}
val inc = shortestPath(source, destination)
if (inc != -1 && inc < target) return Array(0) { IntArray(0) }
if (inc == target) {
ntomax(edges)
return edges
}
for (e in edges) {
if (e[2] == -1) {
e[2] = 1
val s = e[0]
val d = e[1]
val wt = e[2]
g[s]!!.add(Edge(s, d, wt))
g[d]!!.add(Edge(d, s, wt))
val cost = shortestPath(source, destination)
if (cost == -1) continue
if (cost < target) {
e[2] = target - cost + 1
ntomax(edges)
return edges
}
if (cost == target) {
ntomax(edges)
return edges
}
}
}
return Array(0) { IntArray(0) }
}
private fun ntomax(edges: Array<IntArray>) {
for (e in edges) {
if (e[2] == -1) {
e[2] = 1000000000
}
}
}
private inner class Pair(var s: Int, var cost: Int) : Comparable<Pair?> {
override operator fun compareTo(other: Pair?): Int {
return cost - other!!.cost
}
}
private fun shortestPath(s: Int, d: Int): Int {
val q = PriorityQueue<Pair>()
q.add(Pair(s, 0))
val vis = BooleanArray(n)
while (q.isNotEmpty()) {
val rem = q.remove()
vis[rem.s] = true
if (rem.s == d) return rem.cost
for (e in g[rem.s]!!) {
if (!vis[e.d]) {
q.add(Pair(e.d, rem.cost + e.wt))
}
}
}
return -1
}
}