Medium
You are given an array nums
of positive integers and a positive integer k
.
A subset of nums
is beautiful if it does not contain two integers with an absolute difference equal to k
.
Return the number of non-empty beautiful subsets of the array nums
.
A subset of nums
is an array that can be obtained by deleting some (possibly none) elements from nums
. Two subsets are different if and only if the chosen indices to delete are different.
Example 1:
Input: nums = [2,4,6], k = 2
Output: 4
Explanation:
The beautiful subsets of the array nums are: [2], [4], [6], [2, 6].
It can be proved that there are only 4 beautiful subsets in the array [2,4,6].
Example 2:
Input: nums = [1], k = 1
Output: 1
Explanation:
The beautiful subset of the array nums is [1].
It can be proved that there is only 1 beautiful subset in the array [1].
Constraints:
1 <= nums.length <= 20
1 <= nums[i], k <= 1000
class Solution {
fun beautifulSubsets(nums: IntArray, k: Int): Int {
val map: MutableMap<Int, Int> = HashMap()
for (n in nums) {
map[n] = map.getOrDefault(n, 0) + 1
}
var res = 1
for (key in map.keys) {
if (!map.containsKey(key - k)) {
if (!map.containsKey(key + k)) {
res *= 1 shl map[key]!!
} else {
val freq: MutableList<Int?> = ArrayList()
var localKey = key
while (map.containsKey(localKey)) {
freq.add(map[localKey])
localKey += k
}
res *= helper(freq)
}
}
}
return res - 1
}
private fun helper(freq: List<Int?>): Int {
val n = freq.size
if (n == 1) {
return 1 shl freq[0]!!
}
val dp = IntArray(n)
dp[0] = (1 shl freq[0]!!) - 1
dp[1] = (1 shl freq[1]!!) - 1
if (n == 2) {
return dp[0] + dp[1] + 1
}
for (i in 2 until n) {
if (i > 2) {
dp[i - 2] += dp[i - 3]
}
dp[i] = (dp[i - 2] + 1) * ((1 shl freq[i]!!) - 1)
}
return dp[n - 1] + dp[n - 2] + dp[n - 3] + 1
}
}