Hard
You are given a positive integer n
representing the number of nodes in an undirected graph. The nodes are labeled from 1
to n
.
You are also given a 2D integer array edges
, where edges[i] = [ai, bi]
indicates that there is a bidirectional edge between nodes ai
and bi
. Notice that the given graph may be disconnected.
Divide the nodes of the graph into m
groups (1-indexed) such that:
[ai, bi]
, if ai
belongs to the group with index x
, and bi
belongs to the group with index y
, then |y - x| = 1
.Return the maximum number of groups (i.e., maximum m
) into which you can divide the nodes. Return -1
if it is impossible to group the nodes with the given conditions.
Example 1:
Input: n = 6, edges = [[1,2],[1,4],[1,5],[2,6],[2,3],[4,6]]
Output: 4
Explanation: As shown in the image we:
We can see that every edge is satisfied. It can be shown that that if we create a fifth group and move any node from the third or fourth group to it, at least on of the edges will not be satisfied.
Example 2:
Input: n = 3, edges = [[1,2],[2,3],[3,1]]
Output: -1
Explanation: If we add node 1 to the first group, node 2 to the second group, and node 3 to the third group to satisfy the first two edges, we can see that the third edge will not be satisfied. It can be shown that no grouping is possible.
Constraints:
1 <= n <= 500
1 <= edges.length <= 104
edges[i].length == 2
1 <= ai, bi <= n
ai != bi
import java.util.LinkedList
import java.util.Queue
class Solution {
fun magnificentSets(n: Int, edges: Array<IntArray>): Int {
val adj: MutableList<MutableList<Int>> = ArrayList()
val visited = IntArray(n + 1)
visited.fill(-1)
for (i in 0..n) {
adj.add(ArrayList())
}
for (edge in edges) {
adj[edge[0]].add(edge[1])
adj[edge[1]].add(edge[0])
}
val comp = IntArray(n + 1)
var count = -1
var ans = 0
for (i in 1..n) {
if (visited[i] == -1) {
count++
comp[count] = bfs(i, adj, visited, count, n)
if (comp[count] == -1) {
return -1
}
} else {
comp[visited[i]] = Math.max(comp[visited[i]], bfs(i, adj, visited, visited[i], n))
}
}
for (group in comp) {
ans += group
}
return ans
}
private fun bfs(start: Int, adj: List<MutableList<Int>>, visited: IntArray, count: Int, n: Int): Int {
val q: Queue<Int> = LinkedList()
visited[start] = count
var ans = 1
val group = IntArray(n + 1)
q.add(start)
group[start] = 1
while (q.isNotEmpty()) {
val node = q.remove()
for (adjN in adj[node]) {
if (group[adjN] == 0) {
visited[adjN] = count
group[adjN] = group[node] + 1
q.add(adjN)
ans = Math.max(ans, group[adjN])
} else if (Math.abs(group[adjN] - group[node]) != 1) {
return -1
}
}
}
return ans
}
}