Hard
You are given two positive integer arrays nums
and numsDivide
. You can delete any number of elements from nums
.
Return the minimum number of deletions such that the smallest element in nums
divides all the elements of numsDivide
. If this is not possible, return -1
.
Note that an integer x
divides y
if y % x == 0
.
Example 1:
Input: nums = [2,3,2,4,3], numsDivide = [9,6,9,3,15]
Output: 2
Explanation:
The smallest element in [2,3,2,4,3] is 2, which does not divide all the elements of numsDivide.
We use 2 deletions to delete the elements in nums that are equal to 2 which makes nums = [3,4,3].
The smallest element in [3,4,3] is 3, which divides all the elements of numsDivide.
It can be shown that 2 is the minimum number of deletions needed.
Example 2:
Input: nums = [4,3,6], numsDivide = [8,2,6,10]
Output: -1
Explanation:
We want the smallest element in nums to divide all the elements of numsDivide.
There is no way to delete elements from nums to allow this.
Constraints:
1 <= nums.length, numsDivide.length <= 105
1 <= nums[i], numsDivide[i] <= 109
@Suppress("NAME_SHADOWING")
class Solution {
fun minOperations(nums: IntArray, numsDivide: IntArray): Int {
var g = numsDivide[0]
for (i in numsDivide) {
g = gcd(g, i)
}
var minOp = 0
var smallest = Int.MAX_VALUE
for (num in nums) {
if (g % num == 0) {
smallest = Math.min(smallest, num)
}
}
for (num in nums) {
if (num < smallest) {
++minOp
}
}
return if (smallest == Int.MAX_VALUE) -1 else minOp
}
private fun gcd(a: Int, b: Int): Int {
var a = a
var b = b
while (b > 0) {
val tmp = a
a = b
b = tmp % b
}
return a
}
}