Hard
You are given an m x n binary matrix grid where each cell is either 0 (empty) or 1 (occupied).
You are then given stamps of size stampHeight x stampWidth. We want to fit the stamps such that they follow the given restrictions and requirements:
Return true if it is possible to fit the stamps while following the given restrictions and requirements. Otherwise, return false.
Example 1:

Input: grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3
Output: true
Explanation: We have two overlapping stamps (labeled 1 and 2 in the image) that are able to cover all the empty cells.
Example 2:

Input: grid = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], stampHeight = 2, stampWidth = 2
Output: false
Explanation: There is no way to fit the stamps onto all the empty cells without the stamps going outside the grid.
Constraints:
m == grid.lengthn == grid[r].length1 <= m, n <= 1051 <= m * n <= 2 * 105grid[r][c] is either 0 or 1.1 <= stampHeight, stampWidth <= 105class Solution {
private fun canPaved(grid: Array<IntArray>, `is`: Int, js: Int, ie: Int, je: Int): Boolean {
for (i in `is`..ie) {
for (j in js..je) {
if (grid[i][j] == 1) {
return true
}
}
}
return false
}
fun possibleToStamp(grid: Array<IntArray>, h: Int, w: Int): Boolean {
val rl = grid[0].size
for (i in grid.indices) {
val row = grid[i]
var prev = -1
for (j in row.indices) {
if (row[j] == 0) {
if (j + 1 < rl && row[j + 1] == 1 && j - w + 1 >= 0 &&
i + 1 < grid.size && grid[i + 1][j] == 1 && i - h + 1 >= 0 && canPaved(
grid,
i - h + 1,
j - w + 1,
i,
j,
)
) {
return false
}
continue
}
if (j - prev in 2..w) {
return false
}
prev = j
}
if (row.size - prev in 2..w) {
return false
}
}
for (i in 0 until rl) {
var prev = -1
for (j in grid.indices) {
if (grid[j][i] == 0) {
continue
}
if (j - prev in 2..h) {
return false
}
prev = j
}
if (grid.size - prev in 2..h) {
return false
}
}
return true
}
}