Medium
You are given a tree with n
nodes numbered from 0
to n - 1
in the form of a parent array parent
where parent[i]
is the parent of the ith
node. The root of the tree is node 0
, so parent[0] = -1
since it has no parent. You want to design a data structure that allows users to lock, unlock, and upgrade nodes in the tree.
The data structure should support the following functions:
Implement the LockingTree
class:
LockingTree(int[] parent)
initializes the data structure with the parent array.lock(int num, int user)
returns true
if it is possible for the user with id user
to lock the node num
, or false
otherwise. If it is possible, the node num
will become locked by the user with id user
.unlock(int num, int user)
returns true
if it is possible for the user with id user
to unlock the node num
, or false
otherwise. If it is possible, the node num
will become unlocked.upgrade(int num, int user)
returns true
if it is possible for the user with id user
to upgrade the node num
, or false
otherwise. If it is possible, the node num
will be upgraded.Example 1:
Input
[“LockingTree”, “lock”, “unlock”, “unlock”, “lock”, “upgrade”, “lock”]
[[[-1, 0, 0, 1, 1, 2, 2]], [2, 2], [2, 3], [2, 2], [4, 5], [0, 1], [0, 1]]
Output: [null, true, false, true, true, true, false]
Explanation:
LockingTree lockingTree = new LockingTree([-1, 0, 0, 1, 1, 2, 2]);
lockingTree.lock(2, 2); // return true because node 2 is unlocked.
// Node 2 will now be locked by user 2.
lockingTree.unlock(2, 3); // return false because user 3 cannot unlock a node locked by user 2.
lockingTree.unlock(2, 2); // return true because node 2 was previously locked by user 2.
// Node 2 will now be unlocked.
lockingTree.lock(4, 5); // return true because node 4 is unlocked.
// Node 4 will now be locked by user 5.
lockingTree.upgrade(0, 1); // return true because node 0 is unlocked and has at least one locked descendant (node 4).
// Node 0 will now be locked by user 1 and node 4 will now be unlocked.
lockingTree.lock(0, 1); // return false because node 0 is already locked.
Constraints:
n == parent.length
2 <= n <= 2000
0 <= parent[i] <= n - 1
for i != 0
parent[0] == -1
0 <= num <= n - 1
1 <= user <= 104
parent
represents a valid tree.2000
calls in total will be made to lock
, unlock
, and upgrade
.import java.util.LinkedList
class LockingTree(parent: IntArray) {
private val a: Array<IntArray>
private val map = HashMap<Int, MutableList<Int>>()
init {
val l = parent.size
a = Array(l) { IntArray(2) }
for (i in 0 until l) {
a[i][0] = parent[i]
a[i][1] = -1
map.putIfAbsent(parent[i], ArrayList())
val p = map[parent[i]]!!
p.add(i)
map[parent[i]] = p
}
}
fun lock(num: Int, user: Int): Boolean {
val userId = a[num][1]
if (userId == -1) {
a[num][1] = user
return true
}
return false
}
fun unlock(num: Int, user: Int): Boolean {
val y = a[num][1]
if (y == user) {
a[num][1] = -1
return true
}
return false
}
fun upgrade(num: Int, user: Int): Boolean {
var par = num
while (par >= 0) {
val lop = a[par][1]
if (lop != -1) {
return false
}
par = a[par][0]
}
var f = 0
val que = LinkedList<Int>()
val v = IntArray(a.size)
que.add(num)
v[num] = 1
while (que.isNotEmpty()) {
val t = que[0]
que.removeAt(0)
val p: List<Int> = map.getOrDefault(t, ArrayList())
for (e in p) {
if (a[e][1] != -1) {
f = 1
a[e][1] = -1
}
if (v[e] == 0) {
que.add(e)
v[e] = 1
}
}
}
if (f == 1) {
a[num][1] = user
return true
}
return false
}
}
/*
* Your LockingTree object will be instantiated and called as such:
* var obj = LockingTree(parent)
* var param_1 = obj.lock(num,user)
* var param_2 = obj.unlock(num,user)
* var param_3 = obj.upgrade(num,user)
*/