Medium
A k x k
magic square is a k x k
grid filled with integers such that every row sum, every column sum, and both diagonal sums are all equal. The integers in the magic square do not have to be distinct. Every 1 x 1
grid is trivially a magic square.
Given an m x n
integer grid
, return the size (i.e., the side length k
) of the largest magic square that can be found within this grid.
Example 1:
Input: grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
Output: 3
Explanation: The largest magic square has a size of 3.
Every row sum, column sum, and diagonal sum of this magic square is equal to 12.
Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
Diagonal sums: 5+4+3 = 6+4+2 = 12
Example 2:
Input: grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
Output: 2
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
1 <= grid[i][j] <= 106
class Solution {
fun largestMagicSquare(grid: Array<IntArray>): Int {
val m = grid.size
val n = grid[0].size
val rows = Array(m) { IntArray(n + 1) }
val cols = Array(m + 1) { IntArray(n) }
for (i in 0 until m) {
for (j in 0 until n) {
// cumulative sum for each row
rows[i][j + 1] = rows[i][j] + grid[i][j]
// cumulative sum for each column
cols[i + 1][j] = cols[i][j] + grid[i][j]
}
}
// start with the biggest side possible
for (side in Math.min(m, n) downTo 2) {
// check every square
for (i in 0..m - side) {
for (j in 0..n - side) {
// checks if a square with top left [i, j] and side length is magic
if (magic(grid, rows, cols, i, j, side)) {
return side
}
}
}
}
return 1
}
private fun magic(
grid: Array<IntArray>,
rows: Array<IntArray>,
cols: Array<IntArray>,
r: Int,
c: Int,
side: Int,
): Boolean {
val sum = rows[r][c + side] - rows[r][c]
var d1 = 0
var d2 = 0
for (k in 0 until side) {
d1 += grid[r + k][c + k]
d2 += grid[r + side - 1 - k][c + k]
// check each row and column
if (rows[r + k][c + side] - rows[r + k][c] != sum ||
cols[r + side][c + k] - cols[r][c + k] != sum
) {
return false
}
}
// checks both diagonals
return d1 == sum && d2 == sum
}
}