Hard
You are given two integers, m
and k
, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.
The MKAverage can be calculated using these steps:
m
you should consider the MKAverage to be -1
. Otherwise, copy the last m
elements of the stream to a separate container.k
elements and the largest k
elements from the container.Implement the MKAverage
class:
MKAverage(int m, int k)
Initializes the MKAverage object with an empty stream and the two integers m
and k
.void addElement(int num)
Inserts a new element num
into the stream.int calculateMKAverage()
Calculates and returns the MKAverage for the current stream rounded down to the nearest integer.Example 1:
Input [“MKAverage”, “addElement”, “addElement”, “calculateMKAverage”, “addElement”, “calculateMKAverage”, “addElement”, “addElement”, “addElement”, “calculateMKAverage”] [[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]
Output: [null, null, null, -1, null, 3, null, null, null, 5]
Explanation: MKAverage obj = new MKAverage(3, 1); obj.addElement(3); // current elements are [3] obj.addElement(1); // current elements are [3,1] obj.calculateMKAverage(); // return -1, because m = 3 and only 2 elements exist. obj.addElement(10); // current elements are [3,1,10] obj.calculateMKAverage(); // The last 3 elements are [3,1,10]. // After removing smallest and largest 1 element the container will be [3]. // The average of [3] equals 3/1 = 3, return 3 obj.addElement(5); // current elements are [3,1,10,5] obj.addElement(5); // current elements are [3,1,10,5,5] obj.addElement(5); // current elements are [3,1,10,5,5,5] obj.calculateMKAverage(); // The last 3 elements are [5,5,5]. // After removing smallest and largest 1 element the container will be `[5]. // The average of [5] equals 5/1 = 5, return 5`
Constraints:
3 <= m <= 105
1 <= k*2 < m
1 <= num <= 105
105
calls will be made to addElement
and calculateMKAverage
.import java.util.Deque
import java.util.LinkedList
import java.util.TreeMap
@Suppress("NAME_SHADOWING")
class MKAverage(m: Int, k: Int) {
private val m: Double
private val k: Double
private val c: Double
private var avg: Double
private val middle: Bst
private val min: Bst
private val max: Bst
private val q: Deque<Int>
init {
this.m = m.toDouble()
this.k = k.toDouble()
c = (m - k * 2).toDouble()
avg = 0.0
middle = Bst()
min = Bst()
max = Bst()
q = LinkedList()
}
fun addElement(num: Int) {
var num = num
if (min.size < k) {
min.add(num)
q.offer(num)
return
}
if (max.size < k) {
min.add(num)
max.add(min.removeMax())
q.offer(num)
return
}
if (num >= min.lastKey() && num <= max.firstKey()) {
middle.add(num)
avg += num / c
} else if (num < min.lastKey()) {
min.add(num)
val `val` = min.removeMax()
middle.add(`val`)
avg += `val` / c
} else if (num > max.firstKey()) {
max.add(num)
val `val` = max.removeMin()
middle.add(`val`)
avg += `val` / c
}
q.offer(num)
if (q.size > m) {
num = q.poll()
if (middle.containsKey(num)) {
avg -= num / c
middle.remove(num)
} else if (min.containsKey(num)) {
min.remove(num)
val `val` = middle.removeMin()
avg -= `val` / c
min.add(`val`)
} else if (max.containsKey(num)) {
max.remove(num)
val `val` = middle.removeMax()
avg -= `val` / c
max.add(`val`)
}
}
}
fun calculateMKAverage(): Int {
return if (q.size < m) {
-1
} else {
avg.toInt()
}
}
internal class Bst {
var map: TreeMap<Int, Int> = TreeMap()
var size: Int = 0
fun add(num: Int) {
val count = map.getOrDefault(num, 0) + 1
map[num] = count
size++
}
fun remove(num: Int) {
val count = map.getOrDefault(num, 1) - 1
if (count > 0) {
map[num] = count
} else {
map.remove(num)
}
size--
}
fun removeMin(): Int {
val key = map.firstKey()
remove(key)
return key
}
fun removeMax(): Int {
val key = map.lastKey()
remove(key)
return key
}
fun containsKey(key: Int): Boolean {
return map.containsKey(key)
}
fun firstKey(): Int {
return map.firstKey()
}
fun lastKey(): Int {
return map.lastKey()
}
}
}