Hard
You are given an undirected graph defined by an integer n
, the number of nodes, and a 2D integer array edges
, the edges in the graph, where edges[i] = [ui, vi]
indicates that there is an undirected edge between ui
and vi
. You are also given an integer array queries
.
Let incident(a, b)
be defined as the number of edges that are connected to either node a
or b
.
The answer to the jth
query is the number of pairs of nodes (a, b)
that satisfy both of the following conditions:
a < b
incident(a, b) > queries[j]
Return an array answers
such that answers.length == queries.length
and answers[j]
is the answer of the jth
query.
Note that there can be multiple edges between the same two nodes.
Example 1:
Input: n = 4, edges = [[1,2],[2,4],[1,3],[2,3],[2,1]], queries = [2,3]
Output: [6,5]
Explanation: The calculations for incident(a, b) are shown in the table above. The answers for each of the queries are as follows:
answers[0] = 6. All the pairs have an incident(a, b) value greater than 2.
answers[1] = 5. All the pairs except (3, 4) have an incident(a, b) value greater than 3.
Example 2:
Input: n = 5, edges = [[1,5],[1,5],[3,4],[2,5],[1,3],[5,1],[2,3],[2,5]], queries = [1,2,3,4,5]
Output: [10,10,9,8,6]
Constraints:
2 <= n <= 2 * 104
1 <= edges.length <= 105
1 <= ui, vi <= n
ui != vi
1 <= queries.length <= 20
0 <= queries[j] < edges.length
class Solution {
fun countPairs(n: Int, edges: Array<IntArray>, queries: IntArray): IntArray {
val edgeCount: MutableMap<Int, Int> = HashMap()
val degree = IntArray(n)
for (e in edges) {
val u = e[0] - 1
val v = e[1] - 1
degree[u]++
degree[v]++
val eId = Math.min(u, v) * n + Math.max(u, v)
edgeCount[eId] = edgeCount.getOrDefault(eId, 0) + 1
}
val degreeCount: MutableMap<Int, Int> = HashMap()
var maxDegree = 0
for (d in degree) {
degreeCount[d] = degreeCount.getOrDefault(d, 0) + 1
maxDegree = Math.max(maxDegree, d)
}
val count = IntArray(2 * maxDegree + 1)
for (d1 in degreeCount.entries) {
for (d2 in degreeCount.entries) {
count[d1.key + d2.key] += if (d1 === d2) d1.value * (d1.value - 1) else d1.value * d2.value
}
}
for (i in count.indices) {
count[i] /= 2
}
for ((key, value) in edgeCount) {
val u = key / n
val v = key % n
count[degree[u] + degree[v]]--
count[degree[u] + degree[v] - value]++
}
for (i in count.size - 2 downTo 0) {
count[i] += count[i + 1]
}
val res = IntArray(queries.size)
for (q in queries.indices) {
res[q] = if (queries[q] + 1 >= count.size) 0 else count[queries[q] + 1]
}
return res
}
}