Hard
You are given an integer array nums
and an integer k
. You are asked to distribute this array into k
subsets of equal size such that there are no two equal elements in the same subset.
A subset’s incompatibility is the difference between the maximum and minimum elements in that array.
Return the minimum possible sum of incompatibilities of the k
subsets after distributing the array optimally, or return -1
if it is not possible.
A subset is a group integers that appear in the array with no particular order.
Example 1:
Input: nums = [1,2,1,4], k = 2
Output: 4
Explanation: The optimal distribution of subsets is [1,2] and [1,4].
The incompatibility is (2-1) + (4-1) = 4.
Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.
Example 2:
Input: nums = [6,3,8,1,3,1,2,2], k = 4
Output: 6
Explanation: The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].
The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.
Example 3:
Input: nums = [5,3,3,6,3,3], k = 3
Output: -1
Explanation: It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.
Constraints:
1 <= k <= nums.length <= 16
nums.length
is divisible by k
1 <= nums[i] <= nums.length
class Solution {
private class Node {
var visited: BooleanArray = BooleanArray(17)
var size = 0
var min = 20
var max = 0
}
private lateinit var nodes: Array<Node?>
private var size = 0
private var result = 1000000
private var currentSum = 0
fun minimumIncompatibility(nums: IntArray, k: Int): Int {
size = nums.size / k
nodes = arrayOfNulls(k)
for (i in 0 until k) {
nodes[i] = Node()
}
nums.sort()
currentSum = 0
solve(nums, 0)
return if (result == 1000000) -1 else result
}
private fun solve(nums: IntArray, idx: Int) {
if (idx == nums.size) {
result = currentSum
return
}
var minSize = size
var prevMin: Int
var prevMax: Int
var diff: Int
for (node in nodes) {
if (node!!.size == minSize || node.visited[nums[idx]]) {
continue
}
minSize = node.size
prevMin = node.min
prevMax = node.max
diff = prevMax - prevMin
node.min = Math.min(node.min, nums[idx])
node.max = Math.max(node.max, nums[idx])
node.size++
node.visited[nums[idx]] = true
currentSum += if (prevMin == 20) {
node.max - node.min
} else {
node.max - node.min - diff
}
if (currentSum < result) {
solve(nums, idx + 1)
}
currentSum -= if (prevMin == 20) {
node.max - node.min
} else {
node.max - node.min - diff
}
node.visited[nums[idx]] = false
node.size--
node.min = prevMin
node.max = prevMax
}
}
}