Hard
You may recall that an array arr
is a mountain array if and only if:
arr.length >= 3
i
(0-indexed) with 0 < i < arr.length - 1
such that:
arr[0] < arr[1] < ... < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
Given an integer array nums
, return the minimum number of elements to remove to make nums
a mountain array.
Example 1:
Input: nums = [1,3,1]
Output: 0
Explanation: The array itself is a mountain array so we do not need to remove any elements.
Example 2:
Input: nums = [2,1,1,5,6,2,3,1]
Output: 3
Explanation: One solution is to remove the elements at indices 0, 1, and 5, making the array nums = [1,5,6,3,1].
Constraints:
3 <= nums.length <= 1000
1 <= nums[i] <= 109
nums
.class Solution {
fun minimumMountainRemovals(nums: IntArray): Int {
val n = nums.size
// lbs -> longest bitomic subsequence
var lbs = 0
val dp = IntArray(n)
// dp[i] -> lis end at index i, dp2[i] -> lds end at index i
val dp2 = IntArray(n)
var lis: MutableList<Int> = ArrayList()
// calculate longest increasing subsequence
for (i in 0 until n - 1) {
if (lis.isEmpty() || lis[lis.size - 1] < nums[i]) {
lis.add(nums[i])
} else {
val idx = lis.binarySearch(nums[i])
if (idx < 0) {
lis[-idx - 1] = nums[i]
}
}
dp[i] = lis.size
}
lis = ArrayList()
// calculate longest decreasing subsequence
for (i in n - 1 downTo 1) {
if (lis.isEmpty() || lis[lis.size - 1] < nums[i]) {
lis.add(nums[i])
} else {
val idx = lis.binarySearch(nums[i])
if (idx < 0) {
lis[-idx - 1] = nums[i]
}
}
dp2[i] = lis.size
if (dp[i] > 1 && dp2[i] > 1) {
lbs = Math.max(lbs, dp[i] + dp2[i] - 1)
}
}
return n - lbs
}
}