Medium
Given an n x n
binary grid
, in one step you can choose two adjacent rows of the grid and swap them.
A grid is said to be valid if all the cells above the main diagonal are zeros.
Return the minimum number of steps needed to make the grid valid, or -1 if the grid cannot be valid.
The main diagonal of a grid is the diagonal that starts at cell (1, 1)
and ends at cell (n, n)
.
Example 1:
Input: grid = [[0,0,1],[1,1,0],[1,0,0]]
Output: 3
Example 2:
Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0],[0,1,1,0]]
Output: -1
Explanation: All rows are similar, swaps have no effect on the grid.
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,1]]
Output: 0
Constraints:
n == grid.length
== grid[i].length
1 <= n <= 200
grid[i][j]
is either 0
or 1
class Solution {
fun minSwaps(grid: Array<IntArray>): Int {
val len = grid.size
var swap = 0
val preProcess = IntArray(len)
for (i in 0 until len) {
preProcess[i] = countRightZeros(grid[i])
}
for (i in 0 until len) {
val minValueRequired = len - i - 1
var j = i
while (j < len && preProcess[j] < minValueRequired) {
j++
}
if (j == len) {
return -1
}
while (j != i) {
swap++
val temp = preProcess[j]
preProcess[j] = preProcess[j - 1]
preProcess[j - 1] = temp
j--
}
}
return swap
}
private fun countRightZeros(row: IntArray): Int {
var cnt = 0
for (i in row.indices.reversed()) {
if (row[i] != 0) {
break
}
cnt++
}
return cnt
}
}