Hard
Alice and Bob take turns playing a game, with Alice starting first.
Initially, there are n
stones in a pile. On each player’s turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.
Also, if a player cannot make a move, he/she loses the game.
Given a positive integer n
, return true
if and only if Alice wins the game otherwise return false
, assuming both players play optimally.
Example 1:
Input: n = 1
Output: true
Explanation: Alice can remove 1 stone winning the game because Bob doesn’t have any moves.
Example 2:
Input: n = 2
Output: false
Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).
Example 3:
Input: n = 4
Output: true
Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).
Constraints:
1 <= n <= 105
class Solution {
fun winnerSquareGame(n: Int): Boolean {
val dp = BooleanArray(n + 1)
for (i in 1 until n + 1) {
var k = 1
while (k * k <= i) {
if (!dp[i - k * k]) {
dp[i] = true
break
}
k++
}
}
return dp[n]
}
}