Hard
Given an array of integers arr
, you are initially positioned at the first index of the array.
In one step you can jump from index i
to index:
i + 1
where: i + 1 < arr.length
.i - 1
where: i - 1 >= 0
.j
where: arr[i] == arr[j]
and i != j
.Return the minimum number of steps to reach the last index of the array.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 –> 4 –> 3 –> 9. Note that index 9 is the last index of the array.
Example 2:
Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You do not need to jump.
Example 3:
Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.
Constraints:
1 <= arr.length <= 5 * 104
-108 <= arr[i] <= 108
import java.util.Deque
import java.util.LinkedList
class Solution {
fun minJumps(arr: IntArray): Int {
if (arr.size == 1) {
return 0
}
val len = arr.size
val myHash = HashMap<Int, MutableList<Int>>()
var i = 0
while (i < arr.size) {
val curList = myHash.getOrDefault(arr[i], ArrayList())
curList.add(i)
val tempNum = arr[i]
val tempIndex = i
while (i < arr.size && arr[i] == tempNum) {
i++
}
if (i != tempIndex + 1) {
curList.add(i - 1)
}
myHash[tempNum] = curList
}
val myQueue: Deque<Int> = LinkedList()
var step = 0
myQueue.offerLast(0)
val visited = BooleanArray(arr.size)
visited[0] = true
while (myQueue.isNotEmpty()) {
val curCount = myQueue.size
var j = 0
while (j < curCount) {
val curIndex = myQueue.pollFirst()
if (curIndex == len - 1) {
return step
}
if (curIndex + 1 < len && !visited[curIndex + 1]) {
myQueue.offerLast(curIndex + 1)
visited[curIndex + 1] = true
}
if (curIndex - 1 >= 0 && !visited[curIndex - 1]) {
myQueue.offerLast(curIndex - 1)
visited[curIndex - 1] = true
}
val tempList: List<Int> = myHash.getOrDefault(arr[curIndex], ArrayList())
for (integer in tempList) {
if (!visited[integer]) {
myQueue.offerLast(integer)
visited[integer] = true
}
}
myHash.remove(arr[curIndex])
j++
}
step++
}
return step
}
}