LeetCode in Kotlin

1339. Maximum Product of Splitted Binary Tree

Medium

Given the root of a binary tree, split the binary tree into two subtrees by removing one edge such that the product of the sums of the subtrees is maximized.

Return the maximum product of the sums of the two subtrees. Since the answer may be too large, return it modulo 109 + 7.

Note that you need to maximize the answer before taking the mod and not after taking it.

Example 1:

Input: root = [1,2,3,4,5,6]

Output: 110

Explanation: Remove the red edge and get 2 binary trees with sum 11 and 10. Their product is 110 (11*10)

Example 2:

Input: root = [1,null,2,3,4,null,null,5,6]

Output: 90

Explanation: Remove the red edge and get 2 binary trees with sum 15 and 6.Their product is 90 (15*6)

Constraints:

Solution

import com_github_leetcode.TreeNode

/*
 * Example:
 * var ti = TreeNode(5)
 * var v = ti.`val`
 * Definition for a binary tree node.
 * class TreeNode(var `val`: Int) {
 *     var left: TreeNode? = null
 *     var right: TreeNode? = null
 * }
 */
class Solution {
    private var maxProduct: Long = 0
    private var total: Long = 0

    fun sumTree(node: TreeNode?): Int {
        if (node == null) {
            return 0
        }
        node.`val` += sumTree(node.left) + sumTree(node.right)
        return node.`val`
    }

    private fun helper(root: TreeNode?) {
        if (root == null) {
            return
        }
        helper(root.left)
        helper(root.right)
        val leftSubtreeVal = if (root.left != null) root.left!!.`val`.toLong() else 0L
        val leftProduct = leftSubtreeVal * (total - leftSubtreeVal)
        val rightSubtreeVal = if (root.right != null) root.right!!.`val`.toLong() else 0L
        val rightProduct = rightSubtreeVal * (total - rightSubtreeVal)
        maxProduct = Math.max(maxProduct, Math.max(leftProduct, rightProduct))
    }

    fun maxProduct(root: TreeNode?): Int {
        if (root == null) {
            return 0
        }
        total = sumTree(root).toLong()
        helper(root)
        return (maxProduct % 1000000007L).toInt()
    }
}