Hard
Given an n x n
integer matrix grid
, return the minimum sum of a falling path with non-zero shifts.
A falling path with non-zero shifts is a choice of exactly one element from each row of grid
such that no two elements chosen in adjacent rows are in the same column.
Example 1:
Input: arr = [[1,2,3],[4,5,6],[7,8,9]]
Output: 13
Explanation: The possible falling paths are: [1,5,9], [1,5,7], [1,6,7], [1,6,8], [2,4,8], [2,4,9], [2,6,7], [2,6,8], [3,4,8], [3,4,9], [3,5,7], [3,5,9] The falling path with the smallest sum is [1,5,7], so the answer is 13.
Example 2:
Input: grid = [[7]]
Output: 7
Constraints:
n == grid.length == grid[i].length
1 <= n <= 200
-99 <= grid[i][j] <= 99
class Solution {
fun minFallingPathSum(grid: Array<IntArray>): Int {
val n = grid[0].size
var prev = IntArray(n)
var curr = IntArray(n)
var prevMinOne = 0
var prevMinTwo = 0
for (ints in grid) {
var currMinOne = Int.MAX_VALUE
var currMinTwo = Int.MAX_VALUE
for (j in 0 until n) {
val prevMin = if (prev[j] == prevMinOne) prevMinTwo else prevMinOne
curr[j] = ints[j] + prevMin
if (curr[j] < currMinOne) {
currMinTwo = currMinOne
currMinOne = curr[j]
} else if (curr[j] < currMinTwo) {
currMinTwo = curr[j]
}
}
prevMinOne = currMinOne
prevMinTwo = currMinTwo
// reuse curr array, avoid new int[] in every row
val temp = prev
prev = curr
curr = temp
}
return prevMinOne
}
}