Hard
Given two integer arrays arr1
and arr2
, return the minimum number of operations (possibly zero) needed to make arr1
strictly increasing.
In one operation, you can choose two indices 0 <= i < arr1.length
and 0 <= j < arr2.length
and do the assignment arr1[i] = arr2[j]
.
If there is no way to make arr1
strictly increasing, return -1
.
Example 1:
Input: arr1 = [1,5,3,6,7], arr2 = [1,3,2,4]
Output: 1
Explanation: Replace 5
with 2
, then arr1 = [1, 2, 3, 6, 7]
.
Example 2:
Input: arr1 = [1,5,3,6,7], arr2 = [4,3,1]
Output: 2
Explanation: Replace 5
with 3
and then replace 3
with 4
. arr1 = [1, 3, 4, 6, 7]
.
Example 3:
Input: arr1 = [1,5,3,6,7], arr2 = [1,6,3,3]
Output: -1
Explanation: You can’t make arr1
strictly increasing.
Constraints:
1 <= arr1.length, arr2.length <= 2000
0 <= arr1[i], arr2[i] <= 10^9
class Solution {
fun makeArrayIncreasing(arr1: IntArray, arr2: IntArray): Int {
arr2.sort()
var start = 0
for (i in arr2.indices) {
if (arr2[i] != arr2[start]) {
arr2[++start] = arr2[i]
}
}
val l2 = start + 1
val dp = IntArray(l2 + 2)
for (i in arr1.indices) {
var noChange = dp[dp.size - 1]
if (i > 0 && arr1[i - 1] >= arr1[i]) {
noChange = -1
}
for (j in dp.size - 2 downTo 1) {
if (arr2[j - 1] < arr1[i] && dp[j] != -1) {
noChange = if (noChange == -1) dp[j] else Math.min(noChange, dp[j])
}
if (dp[j - 1] != -1) {
dp[j] = 1 + dp[j - 1]
} else {
dp[j] = -1
}
if (i > 0 && arr1[i - 1] < arr2[j - 1] && dp[dp.size - 1] >= 0) {
dp[j] = if (dp[j] == -1) dp[dp.size - 1] + 1 else Math.min(dp[j], dp[dp.size - 1] + 1)
}
}
dp[0] = -1
dp[dp.size - 1] = noChange
}
var res = -1
for (num in dp) {
if (num != -1) {
res = if (res == -1) num else Math.min(res, num)
}
}
return res
}
}