Medium
Given an n x n
binary matrix grid
, return the length of the shortest clear path in the matrix. If there is no clear path, return -1
.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)
) to the bottom-right cell (i.e., (n - 1, n - 1)
) such that:
0
.The length of a clear path is the number of visited cells of this path.
Example 1:
Input: grid = [[0,1],[1,0]]
Output: 2
Example 2:
Input: grid = [[0,0,0],[1,1,0],[1,1,0]]
Output: 4
Example 3:
Input: grid = [[1,0,0],[1,1,0],[1,1,0]]
Output: -1
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
import java.util.LinkedList
import java.util.Queue
class Solution {
private val directions = intArrayOf(0, 1, 1, 0, -1, 1, -1, -1, 0)
fun shortestPathBinaryMatrix(grid: Array<IntArray>): Int {
val m = grid.size
val n = grid[0].size
if (grid[0][0] == 1 || grid[m - 1][n - 1] == 1) {
return -1
}
var minPath = 0
val queue: Queue<IntArray> = LinkedList()
queue.offer(intArrayOf(0, 0))
val visited = Array(m) { BooleanArray(n) }
visited[0][0] = true
while (queue.isNotEmpty()) {
val size = queue.size
for (i in 0 until size) {
val curr = queue.poll()
if (curr[0] == m - 1 && curr[1] == n - 1) {
return minPath + 1
}
for (j in 0 until directions.size - 1) {
val newx = directions[j] + curr[0]
val newy = directions[j + 1] + curr[1]
if (newx in 0 until n && newy >= 0 && newy < n && !visited[newx][newy] && grid[newx][newy] == 0) {
queue.offer(intArrayOf(newx, newy))
visited[newx][newy] = true
}
}
}
minPath++
}
return -1
}
}