Hard
Given a single positive integer x, we will write an expression of the form x (op1) x (op2) x (op3) x ... where each operator op1, op2, etc. is either addition, subtraction, multiplication, or division (+, -, *, or /). For example, with x = 3, we might write 3 * 3 / 3 + 3 - 3 which is a value of 3.
When writing such an expression, we adhere to the following conventions:
/) returns rational numbers.-). For example, “x - x” is a valid expression as it only uses subtraction, but “-x + x” is not because it uses negation.We would like to write an expression with the least number of operators such that the expression equals the given target. Return the least number of operators used.
Example 1:
Input: x = 3, target = 19
Output: 5
Explanation: 3 * 3 + 3 * 3 + 3 / 3. The expression contains 5 operations.
Example 2:
Input: x = 5, target = 501
Output: 8
Explanation: 5 * 5 * 5 * 5 - 5 * 5 * 5 + 5 / 5. The expression contains 8 operations.
Example 3:
Input: x = 100, target = 100000000
Output: 3
Explanation: 100 * 100 * 100 * 100. The expression contains 3 operations.
Constraints:
2 <= x <= 1001 <= target <= 2 * 108class Solution {
private val map: MutableMap<String, Int> = HashMap()
private var x = 0
fun leastOpsExpressTarget(x: Int, target: Int): Int {
this.x = x
return if (x == target) {
0
} else {
dfs(0, target.toLong()) - 1
}
}
// ax^0 + bx^1 + cx^2 +....
// think it as base x problem
private fun dfs(ex: Int, target: Long): Int {
if (target == 0L) {
return 0
}
if (ex > 40) {
return 10000000
}
val state = "$ex,$target"
if (map.containsKey(state)) {
return map.getValue(state)
}
var res = Int.MAX_VALUE
val mod = (target % x).toInt()
if (mod == 0) {
res = if (ex == 0) {
// not use
res.coerceAtMost(dfs(ex + 1, target))
} else {
// not use
res.coerceAtMost(dfs(ex + 1, target / x))
}
} else {
// division is needed
if (ex == 0) {
res = res.coerceAtMost(2 * mod + dfs(ex + 1, target - mod))
res = res.coerceAtMost(2 * (x - mod) + dfs(ex + 1, target - mod + x))
} else {
res = res.coerceAtMost((ex - 1) * mod + dfs(ex + 1, (target - mod) / x))
res = res.coerceAtMost((ex - 1) * (x - mod) + dfs(ex + 1, (target - mod + x) / x))
}
}
map[state] = res
return res
}
}