Easy
Given a positive integer n
, find and return the longest distance between any two adjacent 1
’s in the binary representation of n
. If there are no two adjacent 1
’s, return 0
.
Two 1
’s are adjacent if there are only 0
’s separating them (possibly no 0
’s). The distance between two 1
’s is the absolute difference between their bit positions. For example, the two 1
’s in "1001"
have a distance of 3.
Example 1:
Input: n = 22
Output: 2
Explanation: 22 in binary is “10110”.
The first adjacent pair of 1’s is “10110” with a distance of 2.
The second adjacent pair of 1’s is “10110” with a distance of 1.
The answer is the largest of these two distances, which is 2.
Note that “10110” is not a valid pair since there is a 1 separating the two 1’s underlined.
Example 2:
Input: n = 8
Output: 0
Explanation: 8 in binary is “1000”. There are not any adjacent pairs of 1’s in the binary representation of 8, so we return 0.
Example 3:
Input: n = 5
Output: 2
Explanation: 5 in binary is “101”.
Constraints:
1 <= n <= 109
@Suppress("NAME_SHADOWING")
class Solution {
fun binaryGap(n: Int): Int {
var n = n
var max = 0
var pos = 0
var lastPos = -1
while (n != 0) {
pos++
if (n and 1 == 1) {
if (lastPos != -1) {
max = max.coerceAtLeast(pos - lastPos)
}
lastPos = pos
}
n = n shr 1
}
return max
}
}