Hard
There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges.
You are given the integer n and the array edges where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the tree.
Return an array answer of length n where answer[i] is the sum of the distances between the ith node in the tree and all other nodes.
Example 1:

Input: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
Output: [8,12,6,10,10,10]
Explanation: The tree is shown above.
We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) equals 1 + 1 + 2 + 2 + 2 = 8.
Hence, answer[0] = 8, and so on.
Example 2:

Input: n = 1, edges = []
Output: [0]
Example 3:

Input: n = 2, edges = [[1,0]]
Output: [1,1]
Constraints:
1 <= n <= 3 * 104edges.length == n - 1edges[i].length == 20 <= ai, bi < nai != biclass Solution {
private var n = 0
private lateinit var count: IntArray
private lateinit var answer: IntArray
private lateinit var graph: Array<MutableList<Int>?>
private fun postorder(node: Int, parent: Int) {
for (child in graph[node]!!) {
if (child != parent) {
postorder(child, node)
count[node] += count[child]
answer[node] += answer[child] + count[child]
}
}
}
private fun preorder(node: Int, parent: Int) {
for (child in graph[node]!!) {
if (child != parent) {
answer[child] = answer[node] - count[child] + n - count[child]
preorder(child, node)
}
}
}
fun sumOfDistancesInTree(n: Int, edges: Array<IntArray>): IntArray {
this.n = n
count = IntArray(n)
answer = IntArray(n)
graph = arrayOfNulls(n)
count.fill(1)
for (i in 0 until n) {
graph[i] = ArrayList()
}
for (edge in edges) {
graph[edge[0]]?.add(edge[1])
graph[edge[1]]?.add(edge[0])
}
postorder(0, -1)
preorder(0, -1)
return answer
}
}