Medium
You are given a sorted integer array arr
containing 1
and prime numbers, where all the integers of arr
are unique. You are also given an integer k
.
For every i
and j
where 0 <= i < j < arr.length
, we consider the fraction arr[i] / arr[j]
.
Return the kth
smallest fraction considered. Return your answer as an array of integers of size 2
, where answer[0] == arr[i]
and answer[1] == arr[j]
.
Example 1:
Input: arr = [1,2,3,5], k = 3
Output: [2,5]
Explanation: The fractions to be considered in sorted order are: 1/5, 1/3, 2/5, 1/2, 3/5, and 2/3. The third fraction is 2/5.
Example 2:
Input: arr = [1,7], k = 1
Output: [1,7]
Constraints:
2 <= arr.length <= 1000
1 <= arr[i] <= 3 * 104
arr[0] == 1
arr[i]
is a prime number for i > 0
.arr
are unique and sorted in strictly increasing order.1 <= k <= arr.length * (arr.length - 1) / 2
Follow up: Can you solve the problem with better than O(n2)
complexity?
class Solution {
fun kthSmallestPrimeFraction(arr: IntArray, k: Int): IntArray {
val n = arr.size
var low = 0.0
var high = 1.0
while (low < high) {
val mid = (low + high) / 2
val res = getFractionsLessThanMid(arr, n, mid)
if (res[0] == k) {
return intArrayOf(arr[res[1]], arr[res[2]])
} else if (res[0] > k) {
high = mid
} else {
low = mid
}
}
return intArrayOf()
}
private fun getFractionsLessThanMid(arr: IntArray, n: Int, mid: Double): IntArray {
var maxLessThanMid = 0.0
// stores indices of max fraction less than mid;
var x = 0
var y = 0
// for storing fractions less than mid
var total = 0
var j = 1
for (i in 0 until n - 1) {
// while fraction is greater than mid increment j
while (j < n && arr[i] > arr[j] * mid) {
j++
}
if (j == n) {
break
}
// j fractions greater than mid, n-j fractions smaller than mid, add fractions smaller
// than mid to total
total += n - j
val fraction = arr[i].toDouble() / arr[j]
if (fraction > maxLessThanMid) {
maxLessThanMid = fraction
x = i
y = j
}
}
return intArrayOf(total, x, y)
}
}