Hard
You are given a 2D integer array intervals
where intervals[i] = [starti, endi]
represents all the integers from starti
to endi
inclusively.
A containing set is an array nums
where each interval from intervals
has at least two integers in nums
.
intervals = \[\[1,3], [3,7], [8,9]]
, then [1,2,4,7,8,9]
and [2,3,4,8,9]
are containing sets.Return the minimum possible size of a containing set.
Example 1:
Input: intervals = [[1,3],[3,7],[8,9]]
Output: 5
Explanation: let nums = [2, 3, 4, 8, 9]. It can be shown that there cannot be any containing array of size 4.
Example 2:
Input: intervals = [[1,3],[1,4],[2,5],[3,5]]
Output: 3
Explanation: let nums = [2, 3, 4]. It can be shown that there cannot be any containing array of size 2.
Example 3:
Input: intervals = [[1,2],[2,3],[2,4],[4,5]]
Output: 5
Explanation: let nums = [1, 2, 3, 4, 5]. It can be shown that there cannot be any containing array of size 4.
Constraints:
1 <= intervals.length <= 3000
intervals[i].length == 2
0 <= starti < endi <= 108
class Solution {
fun intersectionSizeTwo(intervals: Array<IntArray>): Int {
intervals.sortWith { a, b ->
if (a[1] == b[1]) {
b[0] - a[0]
} else {
a[1] - b[1]
}
}
val list: MutableList<Int> = ArrayList()
list.add(intervals[0][1] - 1)
list.add(intervals[0][1])
for (i in 1 until intervals.size) {
val lastOne = list[list.size - 1]
val lastTwo = list[list.size - 2]
val interval = intervals[i]
val start = interval[0]
val end = interval[1]
if (lastOne >= start && lastTwo >= start) {
continue
} else if (lastOne >= start) {
list.add(end)
} else {
list.add(end - 1)
list.add(end)
}
}
return list.size
}
}