Medium
You are given a network of n
nodes, labeled from 1
to n
. You are also given times
, a list of travel times as directed edges times[i] = (ui, vi, wi)
, where ui
is the source node, vi
is the target node, and wi
is the time it takes for a signal to travel from source to target.
We will send a signal from a given node k
. Return the minimum time it takes for all the n
nodes to receive the signal. If it is impossible for all the n
nodes to receive the signal, return -1
.
Example 1:
Input: times = [[2,1,1],[2,3,1],[3,4,1]], n = 4, k = 2
Output: 2
Example 2:
Input: times = [[1,2,1]], n = 2, k = 1
Output: 1
Example 3:
Input: times = [[1,2,1]], n = 2, k = 2
Output: -1
Constraints:
1 <= k <= n <= 100
1 <= times.length <= 6000
times[i].length == 3
1 <= ui, vi <= n
ui != vi
0 <= wi <= 100
(ui, vi)
are unique. (i.e., no multiple edges.)import java.util.LinkedList
import java.util.Queue
class Solution {
fun networkDelayTime(times: Array<IntArray>, n: Int, k: Int): Int {
val graph = Array(n + 1) { IntArray(n + 1) }
for (g in graph) {
g.fill(-1)
}
for (t in times) {
graph[t[0]][t[1]] = t[2]
}
val visited = BooleanArray(n + 1)
val dist = IntArray(n + 1)
dist.fill(Int.MAX_VALUE)
dist[k] = 0
val spf: Queue<Int> = LinkedList()
spf.add(k)
visited[k] = true
while (spf.isNotEmpty()) {
val curr = spf.poll()
visited[curr] = false
for (i in 1..n) {
if (graph[curr][i] != -1 && dist[i] > dist[curr] + graph[curr][i]) {
dist[i] = dist[curr] + graph[curr][i]
if (!visited[i]) {
spf.add(i)
visited[i] = true
}
}
}
}
var result = 0
for (i in 1..n) {
result = dist[i].coerceAtLeast(result)
}
return if (result == Int.MAX_VALUE) -1 else result
}
}