LeetCode in Kotlin

373. Find K Pairs with Smallest Sums

Medium

You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.

Define a pair (u, v) which consists of one element from the first array and one element from the second array.

Return the k pairs (u1, v1), (u2, v2), ..., (uk, vk) with the smallest sums.

Example 1:

Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3

Output: [[1,2],[1,4],[1,6]]

Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

Example 2:

Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2

Output: [[1,1],[1,1]]

Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

Example 3:

Input: nums1 = [1,2], nums2 = [3], k = 3

Output: [[1,3],[2,3]]

Explanation: All possible pairs are returned from the sequence: [1,3],[2,3]

Constraints:

Solution

import java.util.PriorityQueue

class Solution {
    private class Node(index: Int, num1: Int, num2: Int) {
        var sum: Long
        var al: MutableList<Int>
        var index: Int

        init {
            sum = num1.toLong() + num2.toLong()
            al = ArrayList()
            al.add(num1)
            al.add(num2)
            this.index = index
        }
    }

    fun kSmallestPairs(nums1: IntArray, nums2: IntArray, k: Int): List<List<Int>> {
        val queue = PriorityQueue { a: Node, b: Node -> if (a.sum < b.sum) -1 else 1 }
        val res: MutableList<List<Int>> = ArrayList()
        run {
            var i = 0
            while (i < nums1.size && i < k) {
                queue.add(Node(0, nums1[i], nums2[0]))
                i++
            }
        }
        var i = 1
        while (i <= k && queue.isNotEmpty()) {
            val cur = queue.poll()
            res.add(cur.al)
            val next = cur.index
            val lastNum1 = cur.al[0]
            if (next + 1 < nums2.size) {
                queue.add(Node(next + 1, lastNum1, nums2[next + 1]))
            }
            i++
        }
        return res
    }
}