Hard
Given an m x n
integers matrix
, return the length of the longest increasing path in matrix
.
From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).
Example 1:
Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9]
.
Example 2:
Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]
. Moving diagonally is not allowed.
Example 3:
Input: matrix = [[1]]
Output: 1
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
0 <= matrix[i][j] <= 231 - 1
class Solution {
fun longestIncreasingPath(matrix: Array<IntArray>): Int {
var maxIncreasingSequenceCount = 0
val n = matrix.size - 1
val m = matrix[0].size - 1
val memory = Array(n + 1) { IntArray(m + 1) }
for (i in matrix.indices) {
for (j in matrix[i].indices) {
maxIncreasingSequenceCount = Math.max(maxIncreasingSequenceCount, move(i, j, n, m, matrix, memory))
}
}
return maxIncreasingSequenceCount
}
private fun move(row: Int, col: Int, n: Int, m: Int, matrix: Array<IntArray>, memory: Array<IntArray>): Int {
if (memory[row][col] == 0) {
var count = 1
// move down
if (row < n && matrix[row + 1][col] > matrix[row][col]) {
count = Math.max(count, move(row + 1, col, n, m, matrix, memory) + 1)
}
// move right
if (col < m && matrix[row][col + 1] > matrix[row][col]) {
count = Math.max(count, move(row, col + 1, n, m, matrix, memory) + 1)
}
// move up
if (row > 0 && matrix[row - 1][col] > matrix[row][col]) {
count = Math.max(count, move(row - 1, col, n, m, matrix, memory) + 1)
}
// move left
if (col > 0 && matrix[row][col - 1] > matrix[row][col]) {
count = Math.max(count, move(row, col - 1, n, m, matrix, memory) + 1)
}
memory[row][col] = count
}
return memory[row][col]
}
}