Hard
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.
arr = [2,3,4]
, the median is 3
.arr = [2,3]
, the median is (2 + 3) / 2 = 2.5
.Implement the MedianFinder class:
MedianFinder()
initializes the MedianFinder
object.void addNum(int num)
adds the integer num
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within 10-5
of the actual answer will be accepted.Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output: [null, null, null, 1.5, null, 2.0]
Explanation:
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105
findMedian
.5 * 104
calls will be made to addNum
and findMedian
.Follow up:
[0, 100]
, how would you optimize your solution?99%
of all integer numbers from the stream are in the range [0, 100]
, how would you optimize your solution?import java.util.PriorityQueue
class MedianFinder {
// take two queues one is for storing upper half and the other is for lowerhalf
// max stores the lower half
// min heap stores the upper half
private val maxHeap: PriorityQueue<Int> = PriorityQueue { a: Int, b: Int -> b - a }
private val minHeap: PriorityQueue<Int> = PriorityQueue()
fun addNum(num: Int) {
if (maxHeap.isEmpty() || maxHeap.peek() > num) {
maxHeap.offer(num)
} else {
minHeap.offer(num)
}
if (Math.abs(maxHeap.size - minHeap.size) > 1) {
balance(maxHeap, minHeap)
}
}
fun balance(maxHeap: PriorityQueue<Int>, minHeap: PriorityQueue<Int>) {
val large = if (maxHeap.size > minHeap.size) maxHeap else minHeap
val small = if (maxHeap.size > minHeap.size) minHeap else maxHeap
small.offer(large.poll())
}
fun findMedian(): Double {
val large = if (maxHeap.size > minHeap.size) maxHeap else minHeap
val small = if (maxHeap.size > minHeap.size) minHeap else maxHeap
return if (large.size == small.size) {
(large.peek() + small.peek()).toDouble() / 2
} else {
large.peek().toDouble()
}
}
}
/*
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/