Medium
Design a data structure that supports adding new words and finding if a string matches any previously added string.
Implement the WordDictionary
class:
WordDictionary()
Initializes the object.void addWord(word)
Adds word
to the data structure, it can be matched later.bool search(word)
Returns true
if there is any string in the data structure that matches word
or false
otherwise. word
may contain dots '.'
where dots can be matched with any letter.Example:
Input
["WordDictionary","addWord","addWord","addWord","search","search","search","search"] [[],["bad"],["dad"],["mad"],["pad"],["bad"],[".ad"],["b.."]]
Output
[null,null,null,null,false,true,true,true]
Explanation
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // return False
wordDictionary.search("bad"); // return True
wordDictionary.search(".ad"); // return True
wordDictionary.search("b.."); // return True
Constraints:
1 <= word.length <= 500
word
in addWord
consists lower-case English letters.word
in search
consist of '.'
or lower-case English letters.50000
calls will be made to addWord
and search
.class WordDictionary {
class TrieNode() {
val children = Array<TrieNode?>(26) { null }
var isWord = false
}
val trieTree = TrieNode()
fun addWord(word: String) {
var p = trieTree
for (w in word) {
val i = w - 'a'
if (p.children[i] == null) p.children[i] = TrieNode()
p = p.children[i]!!
}
p.isWord = true
}
fun search(word: String): Boolean {
fun dfs(p: TrieNode?, start: Int): Boolean {
if (p == null) return false
if (start == word.length) return p.isWord
return if (word[start] == '.') {
for (i in 0..25) {
if (dfs(p.children[i], start + 1)) {
return true
}
}
false
} else {
val i = word[start] - 'a'
dfs(p.children[i], start + 1)
}
}
return dfs(trieTree, 0)
}
}
/*
* Your WordDictionary object will be instantiated and called as such:
* var obj = WordDictionary()
* obj.addWord(word)
* var param_2 = obj.search(word)
*/